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Adimen artifizialak hainbat diziplinatan izan duen eragin handia 

kontuan hartuta, materialen fisikariak ikaskuntza automatikoko 

teknikak lantzen hasi dira euren eguneroko ikerketan. Gaur egun, 

ikaskuntza automatikoa erabiltzen ari da materialen propietateak 

iragartzeko soilik erregresio estatistiko-ereduetan oinarrituz, 

potentzial interatomiko zehatzak sortzeko, baita materialen 

ekuazio oinarrizkoenak ebazteko ere. Eskuizkribu honetan 

materialen zientzian ikaskuntza automatikoko ereduetan 

erabiltzen diren teknika nagusiak, aplikazio garrantzitsuenak eta 

etorkizuneko ikuspegiak aztertzen ditugu. 

 

Gitza-Hitzak: Materialen zientzia. Neurona-sareak. Ikaskuntza 

sakona. Potentzial interatomikoak. Deskribatzaileak. 

Supereroankortasuna. Konputazio kuantikoa. 

 

 

Teniendo en cuenta el gran impacto que ha tenido la inteligencia 

artificial en diversas disciplinas, los científicos y científicas de 

materiales han comenzado a incorporar técnicas de aprendizaje 

automático en su investigación diaria. Actualmente, el aprendizaje 

automático se utiliza para predecir las propiedades de los 

materiales basándose únicamente en modelos de regresión 

estadísticos, para crear potenciales interatómicos precisos y 

también para resolver las ecuaciones más básicas de los 

materiales. En este manuscrito analizamos las principales técnicas 

utilizadas en modelos de aprendizaje automático en ciencia de 

materiales, las aplicaciones más importantes y las perspectivas 

futuras. 

 

Palabras Clave: Ciencia de materiales. Redes neuronales. 

Aprendizaje profundo. Potenciales interatómicos. Descriptores. 

Superconductividad. Computación cuántica.  

 

 

Compte tenu du grand impact que l'intelligence artificielle a eu sur 

diverses disciplines, les physiciens des matériaux ont commencé à 

intégrer des techniques d'apprentissage automatique dans leurs 

recherches quotidiennes. L'apprentissage automatique est 

actuellement utilisé pour prédire les propriétés des matériaux en 

se basant uniquement sur des modèles de régression statistique, 

créer des potentiels interatomiques précis et également pour 

résoudre les équations les plus élémentaires des matériaux. Dans 

ce manuscrit, nous analysons les techniques utilisées dans les 

modèles d'apprentissage automatique en science des matériaux, 

les applications les plus importantes et les perspectives futures. 

 

Mots-Clés : Science des matériaux. Réseaux de neurones. 

Apprentissage profond. Potentiels interatomiques. Descripteurs. 

Supraconductivité. Informatique quantique. 
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1. Introduction  

 

The advent of artificial intelligence in our society has been so fast in the last few years that it has 

permeated our everyday life without us being aware. Many of the world's citizens today have already used 

an automatic translator based on neural network technologies [Art18]. Or voice recognition software 

powered by machine learning [Den13]. Image recognition is applied by many of the most common 

applications to store photos, just to mention one of its more domestic and inoffensive applications. 

Artificial intelligence is thus expected to continue broadening its scope in the next few years and provide 

new functionalities to people in their everyday life, even if its development will pose profound societal 

and ethical questions that stakeholders need to address at the moment and decide the limits of these 

new technologies.  

 

Artificial intelligence, or more precisely what it is understood as machine learning, has rapidly drawn the 

attention of the scientific community and it is more and more used in current research work. Materials 

science is not an exception and many groups around the world are incorporating these techniques into 

their research lines. Machine learning algorithms try to build computational models that can learn from 

a dataset to, afterwards, provide predictions that are too difficult or, better said, hidden for human 

capacities. More precisely, these algorithms try to reveal patterns in the training dataset to make 

predictions or decisions without having been programmed to perform such a particular task. Despite the 

application of these techniques is still in its early days, considering the outstanding capacities that 

machine learning methods have shown in other fields, nobody denies that it will be an outstanding tool 

for the advancement of materials science in the near future.  

 

Despite many of the algorithms in which machine learning is based date back to the 80’s [Hop82], it is 

in the last few years that applications of machine learning techniques have bloomed in materials science. 

There are several reasons for that. The most obvious is the rapid increase in the computational power 

worldwide that has happened in the last decades, which has enabled the application of deep learning 

techniques. Secondly, having in mind that successful machine learning techniques rely on broad, truthful, 

and unbiased data, the development of large curated databases in materials science has made it 

possible to turn datasets into materials discovery platforms [Him19]. Another less apparent but non-

minor aspect of the advent of machine learning techniques in materials science is the culture of releasing 

computational codes as well as databases with open access, making them available free of charge to 

anybody. Thanks to this open software and data culture, which fortunately is expanding in the research 

community, new developments and applications are flourishing everywhere in the world, making these 

techniques more and more common. 

 

It is mentioned by some authors [Hey09] that data-driven science brings a new, fourth, paradigm to the 

ultimate goal of materials science: the discovery of new materials. In the early times, material discovery 

was purely experimental based on trial and error. The development of the laws of thermodynamics 

brought a second paradigm, valid in the XVII, XVIII, XIX, and early XX centuries, in which model based 

theoretical science was implemented in the quest for new materials. The third paradigm arrived in the 

second half of the XX century with the development of practical implementations of quantum mechanics 

in material science based on density functional theory, which allowed the simulation of materials 

properties in the computer. The current paradigm based on machine learning tries to go beyond by 

predicting new materials seeking correlations on large datasets hidden to human intuition. 
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In the following we briefly overview the main concepts and methodologies used in machine learning 

algorithms for materials science, we review the main applications of these techniques in the field, and 

finally we discuss the prospects and future of these methods. 

 

 

 

2. Basic concepts in machine learning methods for materials science 

 

The applications of machine learning to materials science rely on what is called “big data” as well as on 

powerful machine learning algorithms, for instance, neural networks and deep learning.  

 

 

2.1 Big data 

 

Data is crucial in materials science, where experimental observations and calculation results are 

continuously being collected or generated, stored, and analyzed. Materials data, if appropriately handled 

and exploited, are expected to be key in boosting materials development and discovery in coming years 

thanks to machine learning techniques. However, for this to happen, materials data must be made 

available and, ideally, open access to the community. Currently, efforts in this direction are being carried 

out worldwide and so-called materials data infrastructures are plentiful: the AFLOW consortium 

(http://aflowlib.org/) based at Duke University; the Computational Materials Repository (CMR, 

https://cmr.fysik.dtu.dk/), based at DTU; the Materials Project (https://materialsproject.org), based at 

LBNL; the NOMAD CoE project (https://www.nomad-coe.eu/), based at FHI/Max Planck Society. These 

are just a few of the many platforms developed in the last few years [Him19]. Besides collecting, storing 

and providing data, some of these data infrastructures also offer analytic tools for property prediction and 

materials discovery. 

 

The rise of active materials data infrastructures, together with the growing rate of data collection and 

generation, has promoted the era of “big data” in materials science. The concept of big data primarily 

refers to the amount of data but, in a more general sense, it describes a data management strategy 

suitable for processing unstructured, time sensitive, or simply very large databases. Big data is usually 

characterized in terms of the so-called four Vs: volume, velocity (rate at which data is generated), variety 

(the heterogeneity of data type, format and meaning), and veracity (potential lack of data quality). 

 

Within materials science, a pivotal step to benefit from the correlations contained in big data is to find 

the descriptors that determine a specific property or function of a material. For their use in machine 

learning strategies, such descriptors must be expressed in a machine-readable form. This involves what 

it is referred to as a “fingerprinting”, i.e. converting the raw data from the repositories to a machine-

readable form. The fingerprints are basically strings of numbers, which, depending on the nature of the 

problem and the required degree of accuracy, are defined at different levels of so-called granularity. That 

is, if the problem does not require high accuracy the fingerprints may be given in terms of general 

properties of the materials (e.g. the band gap or the melting temperature), whereas for highly accurate 

predictions finer fingerprints containing atomic-level information are needed (e.g. atomic positions or 

electronic density) [Bat21]. Once the appropriate descriptors are identified and the conversion to a 

machine-readable form is completed, big data can be exploited for materials property prediction and 

screening, in particular employing machine learning tools as briefly sketched in Fig. 1.  

 

 

 

 

http://aflowlib.org/
https://cmr.fysik.dtu.dk/
https://materialsproject.org/
https://www.nomad-coe.eu/
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Figure 1: Overall workflow of machine learning in materials science 

 

 

 
 

Adapted with permission from “Machine Learning for Materials Scientists: An Introductory Guide toward Best 

Practices”, A.Y.T. Wang et al., Chem. Mater. 32, 4954 (2020). Copyright 2020, American Chemical Society. 

 

 

2.2 Main concepts in machine learning 

 

Depending on the available data, machine learning can be divided into three main categories: supervised, 

unsupervised, and reinforcement learning. Supervised learning involves training a model with real input-

output datasets to predict optimal outputs for new labelled inputs. Certainly, supervised learning is the 

most mature and powerful category, and it is widely used in materials science [But18]. For example, in 

the prediction of physical properties [War17, Isa17,Xie18,Sch19,Fab18,Gho19,Tod19] using as input the 

properties of a material or process (e.g. geometry, external conditions). As opposed to supervised 

learning, where labelled input data is used, in unsupervised learning only unlabelled input data is given 

to a model and the learning algorithm is focused on finding hidden patterns in the data. Unsupervised 

learning is often employed for preprocessing the input data [Zak18].  In reinforcement learning, a model 

is asked to find a set of optimal actions for a given goal in order to maximize a reward. In other words, it 

learns from interactions with the environment. Reinforcement learning is rapidly emerging in the field of 

materials science, and it can be very useful in tasks that demand machine creativity [Zhu18]. 

 

Furthermore, within the field of materials design and discovery, the machine learning strategy is 

commonly based on solving the so-called forward problem, which relies on screening a predefined list of 

materials candidates based on the properties predicted by machine learning. The list of materials 

properties that have been predicted using forward machine learning are truly immense as we will discuss 

below, and studied cases range from basic properties such as lattice thermal conductivity [Che19-1] to 

more exotic ones, e.g. superconductivity [Sta18]. Interestingly, in recent years the emphasis has shifted 

to strategies for solving the inverse problem, that is, directly generating material candidates starting from 

the target property or functionality [Tim18, Che19-2]. However, the materials space is huge and makes 

the inverse problems hard to converge. Moreover, one target property might correspond to multiple 

materials, which is referred to as “one-to-many” phenomena or “non-uniqueness”. In order to tackle these 

problems, different strategies are being put forward [Bat21], and inverse design problems are expected 

to become ubiquitous in the near future. 

 

Another crucial part of the machine learning process involves the choice of an appropriate algorithm to 

perform the analysis of the data. The spectrum of possible algorithms is enormous, ranging from linear 
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regression and nonlinear methods (kernel-based or Gaussian-process-based) to decision trees, support 

vector machines, and neural networks. Depending on the type of data and the question posed, various 

algorithms may be suitable for a given machine learning problem. Furthermore, it is often helpful to use 

an ensemble of different algorithms, or even of similar algorithms with different values for their internal 

parameters (known as ‘bagging’ or ‘stacking’), allowing  the creation of a more robust model.  

 

In particular, neural networks (NN) are well established in materials science, where they have been 

successfully applied [Agr19, Li22], e.g. in the development of accurate interatomic potentials and in the 

mapping of complex materials behavior (flow stress, fatigue behavior, microstructure, etc.) to materials 

processing parameters (heat treatment, deformation, cold working, etc.). In the following, we briefly 

introduce the basics and the recent trends of NNs. 

 

 

2.3 Neural networks and deep learning 

 

Neural networks, also known as artificial neural networks, are inspired by the activity of the human brain 

and they mimic the way in which brain cells (neurons) signal to one another.  A neural network consists 

of layers of nodes, containing an input layer, one or more hidden layers, and an output layer (see Fig. 2). 

Each node or artificial neuron is connected to another node by a direct link, which serves to propagate 

the data from one layer to the next. In fact, each individual node or neuron of a NN can be pictured as its 

own regression model, composed of input data, weights, a bias (or threshold), and an output (see Fig. 2). 

Once a set of inputs ([x1,...xn]) is established, weights ([w1,...wn])  are assigned to help determine the 

relevance of each variable. Then, all inputs are multiplied by their respective weights, summed, and 

shifted by the bias (b). Afterward, this summation (z) is passed through an activation function (σ), which 

defines the output of the node (Y=σ(z)). If that output exceeds the considered bias or threshold, the node 

is “fired” (or activated) and data is passed to the next layer in the network. Otherwise, no data is sent to 

the next layer of the NN. Within this approach, if the node is fired its output becomes the input of the next 

one. This process of passing data from one layer to the next defines this NN as a feed-forward network.  

 

The activation function defined above is a critical component of a NN. If the function σ is taken to be 

linear, the neuron performs linear regression or classification. Because of its limited power, using linear 

activation functions it is not possible to create complex mappings between inputs and outputs of the 

network. Therefore, typically σ is chosen to be a nonlinear function, which enforces a nonlinear regression 

and allows to solve classification problems that are not linearly separable. Commonly employed nonlinear 

activation functions include sigmoid, hyperbolic tangent (tanh), and rectified linear unit (ReLU) [Cho22]. 

The choice of an activation function is very relevant, as it can significantly affect the efficiency of the 

training as well as the final accuracy.  
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Figure 2 

 

 

 
 

Figure 2: (Left) Illustration of a general neural network with multiple hidden layers, adapted from [Agr19]. (Right) 

Schematic representation of a single node’s functioning within a NN, adapted from [Li22]. 

 

 

Another key component of the learning process is the loss function (also known as an objective function 

or empirical risk), which is used to evaluate the accuracy of the NN. The loss function is calculated by 

comparing the output of the neural network and the known target value data, and depending on the 

problem different loss functions can be used, e.g. mean squared error (MSE), negative log likelihood 

(NLL), or binary cross entropy (BCE).  The ultimate goal is to minimize the loss function until the desired 

accuracy, which is typically done by iteratively adjusting the weights via gradient descent algorithms such 

as stochastic gradient descent (SGD), Adam, Adagrad, etc. [Cho22]. Remarkably, many modern NN 

frameworks make use of so-called back-propagation (or backward propagation of errors) to obtain the 

partial derivatives of the loss function with respect to the weights through recursive application of the 

chain rule, iterating back from the last layer. The high efficiency of the back-propagation method makes 

it possible to employ gradient methods for training multilayer NNs. 

 

Multilayer NNs are characterized by the depth of layers, that is, the number of hidden layers it 

incorporates. A neural network that consists of many layers, typically 5-100 including the input and output 

layers, is considered a deep learning (DL) algorithm. Deep learning is one of the best-performing machine 

learning techniques, as its wide success in computer vision and speech recognition has demonstrated 

[Lec15]. Remarkably, in recent years DL has also emerged as a game-changing method in the field of 

materials science [Li22]. The potential of deep learning can be mainly attributed to its ability to generate 

representations that capture the most relevant aspects of the data, while disregarding the nonessential 

details. Besides, DL is highly flexible, with a large spectrum of available model architectures, each of them 

suited for a particular type of input-data. However, the high representation power of DL requires a large 

training dataset to fit the models and achieve accurate results. In this sense, efforts are being made to 

benefit from the inherent structure in materials sciences to reduce the amount of data needed in DL 

algorithms in this field [Bat19]. 

 

A critical issue regarding deep learning is that this method is not readily interpretable, i.e. it is challenging 

to achieve a detailed explanation on how the model arrives at its predictions. Usually, DL generates black-

box models that one would ideally wish to open and understand. Moreover, interpretability is also relevant 

for debugging machine learning models and for taking informed steps towards their improvement. 

Enhancing interpretability is indeed an essential ingredient for the broad deployment of DL in all fields, 

including materials science. Within this scenario, several methods to interpret DL methods have been 

proposed recently [Zil18,Bac15,Kum17,Mon18]. 
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Regardless of the above-mentioned issues, DL is clearly outperforming other machine learning 

techniques in various scientific areas, and it is rapidly becoming an essential tool in materials science. 

An evident proof of this is the recent successful application of DL to solve a wide variety of problems in 

materials science,[Gha15,Mor16,Sch17-1,Rya18,Xie18,Zil18] as well as the  development of custom 

neural network architectures in this field [Xie18,Sch18,Gho19]. 

 

 

 

3. Applications in materials science 

 

The ultimate goal of machine learning applications in materials science is the discovery of new materials 

with physical properties that outperform current ones. New advanced functional materials will be crucial 

to tackle the huge challenges the world is facing in this century, mostly related to the climate crisis, 

increasing energy demand, and exhaustion of natural resources. Considering that the estimated number 

of possible materials is as large as a googol (10100) [Wal15], it seems inconceivable that there are no 

synthesizable materials out there with, for example, a larger thermoelectric efficiency than current best 

thermoelectric materials or a higher critical superconducting temperature. The capacity of unveiling 

hidden correlations to human capacity makes machine learning a formidable tool in this daunting task. 

Although the applications of these techniques are still somewhat primordial and a larger impact is 

expected in the coming years, there are already promising results that have led to the discovery and 

experimental realization of new interesting materials [Teh18]. It is clear that this data driven new 

approach towards materials discovery is a promising alternative to the traditional way based exclusively 

on experimentation, theory, and/or computation.  

 

The success of machine learning techniques will depend on their capacity of predicting physical and 

chemical properties of unknown materials based on datasets, as well as in the possibility of incorporating 

artificial intelligence techniques into the calculation of properties that at the moment are too complex or 

expensive for first-principles methods. Current efforts in the application of artificial intelligence to material 

science are thus focused on estimating materials properties based on existing datasets, on the 

development of empirical potentials to describe the interactions between atoms in a material, and the 

ultimate solution of the Schrödinger equation in systems with few electrons. In the following we will briefly 

overview some of the main results obtained thus far in each of these areas. 

 

 

3.1 Prediction of materials properties based on datasets 

 

There are about a few millions of materials cataloged and hundreds of millions of properties calculated 

for them already [Cur12]. This does not mean, however, that all properties of all known materials are 

classified: there may be known materials that have unknown properties, which may be remarkable. The 

use of artificial intelligence can help to calculate the properties of materials that have not been studied 

thus far, in order to unveil if an already known material existing in the databases has an interesting 

unknown property. Also, based on analogies to the compounds in the databases, the existence of new 

materials can be predicted.  

 

Unless the problem is well framed with suitable descriptors, machine learning algorithms will not succeed 

in this task. The standard descriptors used currently in the machine learning prediction of materials 

properties are related to the elemental properties and the chemical environment. The elemental 

descriptors can be the period and group in the periodic table of the element, the ionization potential, the 

covalent radius, the electronegativity, and so on. It is noteworthy to state that elemental descriptors 

should be uncorrelated. Thus, it is not surprising that sometimes better results are obtained by simply 
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considering the group and period of the element instead of a large set of elemental descriptors [Sch17-

2]. The descriptors of the chemical environment are more difficult to determine, since they do not depend 

exclusively on one particular atom, but on the other atoms in the vicinity. Different descriptors have been 

developed in the last years that face this difficulty. However, it is not given that a descriptor is better than 

another one: the suitability of them may be problem dependent. Some of the most common descriptors 

for the chemical environment are those based on the Coulomb repulsion between atoms [Rup12], the 

radial and angular functions introduced by Behler and Parrinello that determine the atomic neighbors of 

a given compound [Beh07], or the smooth overlap of atomic positions (SOAP) that is constructed by 

centering Gaussian functions at each atomic sites [Raf12]. 

 

 

Figure 3: (a) Predicted superconducting critical temperature by machine learning versus the measured 

critical temperature. (b)-(e) Predicted critical temperature versus the experimental critical temperature 

when the machine learning training is performed exclusively in one superconducting family 

 

 

 
Figure taken from Ref. [Sta18]. 

 

 

Making use of these descriptors and large databases, machine learning techniques have been applied 

to the prediction of many physical properties of materials already. The list is large and growing [Sch19], 

and includes predictions of electronic, mechanical, magnetic, and vibrational properties such as the Curie 

temperature [Bal18], vibrational free energy and entropy [Leg17], electronic band gap [Xie18], lattice 

parameter [Pil18], heat capacity [Isa17], thermal expansion coefficient [Isa17], thermal conductivity 

[Car14-1], local magnetic moments [Pha17], melting temperature [Sek14], magnetocaloric effect 

[Zha18], grain boundaries [Kik18], Seebeck coefficient [Gau16], thermoelectric figure of merit [Car-2], 

bulk and shear moduli [Xie18, Teh18], electrical resistivity [Gau16], density of states [Sch14], metal-

insulator classification [Shi16], topological invariants [Zha17], and superconducting critical temperature 

[Sta18].   

 

Some of these first applications of machine learning techniques to the prediction of materials properties 

based on databases are quite remarkable already. The performance of the models in predicting 

experimental electronic band gaps lies between standard approaches for dealing with electronic 

correlation and more advanced methods [Xie18]. By screening more than 100,000 systems for superhard 

materials, a recent work was able to predict new superhard compounds, two of which were actually 
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synthesized a posteriori [Teh18].  Another remarkable application sketched in Fig. 3 was the creation of 

a regression model for the critical temperature (Tc) of superconductors, including low-Tc as well as high-

Tc cuprates and pnictides [Sta18]. A very interesting result is that a model trained in one type of 

compound is unable to predict the Tc of other types of superconductors. This points to the fact that the 

superconducting mechanism is different for low-Tc superconductors, pnictides, and cuprates. 

 

 

3.2 Development of empirical potentials based on machine learning 

 

Based on databases and elemental and chemical environment descriptors, the prediction of crystal 

structures simply from the chemical composition has also been attempted by machine learning 

techniques [Fab16, Kim18]. This is one of the ultimate goals of materials discovery, as the crystal 

structure is the starting point for any other characterization of a material. However, the approaches so 

far purely based on databases focus on specific types of compounds, like Heusler compounds [Kim18] 

or perovskites [Sch17-2]. Considering that the databases used are formed by already known materials, 

these approaches are not expected to be able to predict fully novel crystal structures with unexpected 

properties. More traditional crystal structure prediction techniques based on the density-functional theory 

(DFT) calculation of formation enthalpies [Pic06, Goe04, Gla06, Wan10], which are not biased by the 

recurrence of particular types of compounds in databases, are more prone to new unexpected 

discoveries. The problem of the latter approach is that it requires a huge computational effort, already 

very intensive for ternary compounds and probably unfeasible for quaternaries.  

 

Machine learning techniques can however help in this task, but in a different way: with the development 

of empirical machine learning potentials which can calculate the energies, atomic forces, and lattice 

stresses in a fraction of time compared to DFT. Machine learning potentials use structural descriptors to 

fit a force field on a training set built with forces usually calculated with DFT on different atomic 

configurations, which are in most cases generated by ab initio molecular dynamics. There have been 

several different machine learning potentials developed in the literature since Sumper et al. used for the 

first time neural networks to create an empirical potential [Sum92]. One of the most successful machine 

learning potentials are those developed by Behler and Parrinello [Beh07], in which the total energy of the 

system is represented as the sum of individual atomic contributions. This has become standard in other 

more modern machine learning potentials because it allows a very fast calculation of the forces and, thus, 

it makes possible the application of these potentials to very large systems. Other types of highly used 

machine learning potentials are the so-called Gaussian approximation potentials (GAP) [Bar10], which 

make use of Gaussian regression by exploiting the fact that the forces on the training set are usually 

distributed according to a Gaussian. GAP potentials have been used in many systems, such as boron 

[Der18], iron [Dra18], graphene [Row18], and so on.  

 

All these machine learning potentials have DFT accuracy, obviously at the DFT level used to train them. 

Having fast but accurate potentials can give the option to study the thermodynamic properties of large 

systems, with thousands or even millions of atoms, as well as their dynamics, by running molecular 

dynamics simulations for times unaffordable to DFT. Machine learning potentials can also be useful for 

crystal structure prediction according to recent works [Pic22]. Whether machine learning potentials based 

crystal structure prediction becomes standard will depend on the capacity of these potentials to describe 

different crystal structures even if the chemical environment is different. This is one of the biggest 

challenges in the field, which is of utmost importance for the sake of materials discovery. 
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3.3 Solving the electronic Schrödinger equation with deep neural networks 

 

The advantage but also the problem of current machine learning potentials is that indeed they have DFT 

accuracy. However, due to the approximations assumed by DFT for the electronic exchange and 

correlation part of the electron-electron interaction, the DFT calculations used to build the potential may 

not yield good atomic forces, hindering their accuracy and predictability. This is a difficult problem to 

overcome because calculating accurately the electronic wave functions requires very complex and 

expensive calculations with quantum Monte Carlo, coupled clusters, or full configuration interaction (FCI) 

methods. It is hard to believe that machine learning can help to solve the electronic problem itself, but 

recent deep neural network applications have shown that the Schrödinger equation of spin Hamiltonians 

as well as simple fermionic problems can be solved making use of neural networks [Car17, Pfa20]. 

Applications have been limited to very simple systems like molecules, but have reached accuracies 

comparable to FCI with a reduced computational cost. These results are promising and show that neural 

networks can be applied to the core problem as well, by helping to solve the most basic equations that 

govern matter. 

 

The scalability of these methods to larger systems will determine the future of these techniques. If 

researchers manage to make these techniques efficient also for systems with a large number of 

electrons, one can think of training machine learning potentials on these calculations. This can yield an 

unprecedented accuracy for materials simulations and a bright future for materials science.    

 

 

 

4. Prospects and future 

 

The capacity of machine learning techniques to unveil hidden correlations in datasets and to perform 

predictions based on them, examples of which have been discussed above, challenges one of the most 

basic pillars of science. Scientific progress up to now has been based mostly on the idea that 

understanding the reasons behind a given physical phenomenon opens the possibility of making new 

predictions and discoveries. In other words, the comprehension of physical laws precedes the prediction 

of physical properties. With machine learning methods, however, this is no longer true, as predictions can 

be made without having an understanding. And these predictions may be perfectly right. Causality, which 

is at the core of scientific construction, is therefore questioned by machine learning approaches. 

 

Such a radical statement, however, is not totally exact because, as it has been described above, defining 

accurate descriptors is necessary for machine learning methods to work. And in order to define accurate 

descriptors a physical understanding of the problem at hand is necessary, which helps determine the 

right variables at play. Therefore, no machine learning method will be successful without a clear prior 

understanding of the physical problem. Moreover, despite the obscurity of machine learning predictions, 

the deep causal understanding of the problems will always be essential and, thus, the quest for the 

deepest causal reasons in materials science will not disappear from the research community.  

 

A clarifying example of the need for fundamental laws and understanding is provided by the machine 

learning predictions on superconductivity. Despite machine learning regression models are capable of 

reproducing experimentally observed critical temperatures in high-temperature superconducting 

cuprates [Sta18], no new superconducting material with a higher critical temperature has been predicted 

and later synthesized thanks to machine learning predictions. The main reason is probably that the 

physical mechanism behind superconductivity in these compounds remains a mystery. On the contrary, 

record superconducting critical temperatures above 250 K have been measured in high-pressure 

hydrides [Dro19], following earlier theoretical predictions performed without any help of machine learning 
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techniques [Pen17]. The latter calculations are possible only because in these compounds the coupling 

is the well-known electron-phonon interaction, which is fundamentally quite well understood, and the 

physical understanding of the problem is sufficient to guide the quest for higher Tc materials. 

 

Anyway, machine learning techniques are a fantastic tool for the advancement of science, also materials 

science, and will become more and more common in the field. The development of empirical potentials 

based on machine learning techniques, for instance, offers an unprecedented technique in materials 

science. As calculating forces and energies with these potentials is orders of magnitude faster than with 

DFT, but keeping DFT accuracy at the same time, systems with a very large number of atoms can be 

simulated, or very long molecular dynamics simulations prohibitively expensive for DFT can be ran. 

Therefore machine learning potentials can open the way for the study of, for instance, biological systems 

with DFT accuracy, considering that the length and time scales of biological processes are too large for 

DFT calculations. Also, machine learning potentials can be highly efficient for pure crystal structure 

predictions in materials with a complex chemical formula, for instance, ternary compounds. The chemical 

space is too large for DFT standard crystal structure prediction methods [Zha17-2, Oga19]. Despite it may 

be obscure why machine learning potentials give its values, their use, after benchmarking them 

rigorously, can allow us to perform calculations that were not feasible before, opening new avenues in 

research. In that sense, machine learning potentials are not that different from the current use a large 

part of the research community gives to DFT calculations: without clearly understanding why it is giving 

these results it is perfectly valid in research studies.    

 

An emerging subfield of machine learning that is expected to have a strong impact on a broad range of 

scientific areas is quantum machine learning (QML), which lies at the intersection between quantum 

computing and machine learning [Bia17]. Quantum computing is envisioned to solve intricate problems 

that classical computing cannot; this is what is known as “quantum advantage” or “quantum speed-up”. 

Undoubtedly, the enormous speed-up in computational efficiency provided by quantum computers and 

quantum algorithms holds a great potential to boost the performance of machine learning 

systems.[Hua22] As such, QML might enable improving and often expediting classical machine learning 

techniques, which is referred to as achieving quantum advantage in QML. This has motivated the 

development of a host of quantum machine-learning algorithms like quantum supervised and 

unsupervised learning [LLo13], or quantum reinforcement learning [Dun16]. Similarly, research has been 

carried out for neural networks aimed at discovering unforeseen quantum advantages [Wie15, Ami18, 

All20]. In particular, following Feynman’s idea [Fey82], quantum computation is expected to play a key 

role in the simulation of quantum systems with many degrees of freedom. Such is the case of materials 

science, where QML algorithms are expected to be a promising alternative to their classical counterparts. 

For instance, shallow neural networks using quantum algorithms have already been applied to obtain 

accurate molecular potential energy surfaces [Xia18], or to simulate excited states of monolayer 

transition metal dichalcogenides both on classical and quantum computers [Saj21]. With the rapid 

development of new quantum algorithms and larger-scale quantum computers, QML techniques are 

expected to become powerful tools to perform electronic structure calculations or to design new 

materials. As such, QML is expected to be a game-changer in the future of materials science.  

 

As it was mentioned above, the prospects of machine learning techniques are intrinsically linked to the 

quality of the datasets used in the models. In fact, these methods usually require large data sets for the 

learning to be effective. This is normally not a problem in fields such as image recognition, where millions 

of input datasets are available. However, in materials science the amount of high-quality data points is 

normally limited to hundreds or thousands, which may not be enough in some cases. Besides, current 

data infrastructures contain mostly computational and hardly no experimental data. Hence, the scientific 

community, including researchers, journals and funding agencies, need to make a serious effort in 

building relevant data repositories to fully exploit the potential of not only machine learning, but of data-
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driven materials science in general. In this vein, the open science movement – which aims to make 

research more accessible and usable by everyone –  has been and will certainly be crucial in enabling 

the advancement of this field [Him19]. Remarkably, with the aim of providing aid in data management, 

the FAIR Data Principles were established:  findability, accessibility, interoperability, and reusability 

[Wil16, Dra18]. Despite all these initiatives, materials data infrastructures face various challenges today 

–relevance, completeness, standardization, acceptance, and longevity– that still need to be addressed 

[Him19]. 

 

An alternative solution to the problem of limited datasets relies on meta-learning, a subfield of machine 

learning also known as “learning to learn”. In other words, meta-learning learns from experience of solving 

different problems and makes inferences about transformations useful in different contexts [Jan11]. 

Based on this approach, developments have been made that allow to achieve high-level performance on 

learning problems with limited data [Gra14, Dua17, Lak15]. This can have important consequences on 

materials science, where data are scant and normally slow and expensive to achieve. Indeed, meta-

learning is a growing approach that has provided interesting applications in materials science in recent 

years, ranging from the fingerprint of nanoporous materials for hydrogen storage [Sun21], the iterative of 

peptides for bio-materials [Rai21], and the guided synthesis of flash graphene [Bec22], just to name a 

few. 

 

In conclusion, provided that international efforts to gather large and open access databases continue in 

the coming years, materials science will be powered more and more by machine learning methods. Even 

if the causal understanding of physical phenomena will continue to be crucial for the development of the 

field, the incorporation of machine learning techniques into materials science will boost the discovery of 

new advanced materials.    

 

 

 

References 

 

[Agr16] AGRAWAL, A.; CHOUDHARY, A. (2016). Perspective: Materials informatics and big data: Realization of the 

“fourth paradigm” of science in materials science. APL Materials, 4, 053208. 

[Agr19] AGRAWAL, A.; CHOUDHARY, A. (2019). Deep materials informatics: applications of deep learning in materials 

science. MRS Communications 9, 779-792. 

[All20] ALLCOCK, J.; HSIEH, C.-Y.; KERENIDIS I.; ZHANG S. (2020). Quantum algorithms for feedforward neural 

networks. ACM Transactions on Quantum Computing, 1, 1-24.  

[Ami18] AMIN, M. et al. (2018). Quantum Boltzmann Machine. Physical Review X,  8, 021050. 

[Art18] ARTETXE, M.; LABAKA, G.; AGIRRE, E. (2018). Unsupervised statistical machine translation. Proceedings of 

the 2018 Conference on Empirical Methods in Natural Language Processing, 3632-3642. 

[Bac15] BACH, S. et al. (2015). On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise 

Relevance Propagation, PLOS ONE, 10, e0130140. 

[Bal18] BALACHANDRAN, P. V.; KOWALSKI, B.; SEHIRLIOGLU, A.; LOOKMAN, T. (2018). Experimental search for high-

temperature ferroelectric perovskites guided by two-step machine larning. Nature Communications, 9, 1668. 
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